Hypothesis Test Checklist

	One Sample Proportion z-Test	One Sample Mean t-test _{\sigma} - unknown (population standard deviation)
Parameter of Interest (in words)	p = the proportion of	μ = the mean number of
Hypothesis	но Р На	H0 μ Hα μ
A ssumptions/ Conditions	Random: Data from a random sample or randomized experiment	Random: Data from a random sample or randomized experiment
	Normal: എം 10 and n(1-p0) > 10	Normal: Probability distribution
	Independent: Observations; 10% condition if sampling without replacement.	Normal of large sample (n ≥ 30)
		Independent: Observations; 10% condition if sampling without replacement.
N ame of Test	1 Computer to at Four Duran aution	1 Sample t-test For Mean
■ ■ me or rest	1 Sample z-test For Proportion	**This includes Matched-Pairs t-tests
T est Statistic	$z = \frac{\stackrel{\wedge}{p - p_0}}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$t = \frac{\overline{x} - \mu_0}{\frac{S_x}{\sqrt{n}}}$
O btain a	"Calculator Talk": normalcdf(lowerbo	ound, df = n - 1
<i>p</i> -value	upperbound, mean, standard deviation) or Stat - Test - 5	"Calculator Talk": tcdf(lowerbound, upperbound, df) or Stat - Test - 2
	Correct AP Notation: p(z)=	Correct AP Notation: p(t)=
Make a Decision	$p<\alpha$ This Is A Significant Result & Reject H0 @ α = Level Of Sig,	
	$p>\alpha$ Not A Significant Result & Fail To Reject H0 @ α = Level Of Sig.	
S tate	There is sufficient evidence to (fail to) reject the null hypothesis at the	
Conclusion & Interpret in Context	in the context of the problem!	get to also interpret what this means

:1) What is different about the two tests? What is the same? 2) How do you know which test

to use? 3) There is also a 1-Sample Mean z-test σ -known. This test is uncommon. Why? To Consider