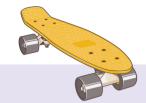
OLVING EQUATIONS WITH CUBE ROOTS

Taking the cube root of a number is the opposite, or inverse, of cubing it. So, you can solve some equations using cube roots.

Let's try it! Solve x3 = -8 for x.

 $x^3 = -8$

 $\sqrt[3]{x^3} = \sqrt[3]{-8}$ Take the cube root of both sides of the equation.


x = -2 Since $(-2)3 = (-2) \cdot (-2) \cdot (-2) = -8$, the cube root of -8 is -2.

In the example above, you can simplify the cube root of -8 to get -2 since -8 is a perfect cube.

Consider solving an equation like $x^3 = 15$. Because 15 is not a perfect cube, you would need to write your answer using the cube root symbol. So, the exact solution of $x^3 = 15$ is $x = \sqrt{3}$ 15.

Try it yourself! Solve each equation for the variable. Don't forget to check if you're taking the cube root of a perfect cube or not!

b3 = 64	f3 = 2	<i>z</i> 3 = –27
h3 = 216	p3 = −9	m3 = 512
c3 = -300	<i>r</i> 3 = 125	b3 = -729
<i>t</i> 3 = 1,500	_n 3 = 1,000	α ³ = -1,331
g3 = 3,375	y3 = -27,000	d3 = 6,400

