SOLVING EQUATIONS WITH SQUARE ROOTS

Taking the square root of a number is the opposite, or inverse, of squaring it. So, you can solve some equations using square roots.

Let's try it! Solve x2 = 9.

 $\sqrt{x^2} = \sqrt{9}$ Take the square root of both sides of the equation.

 $x = \pm 3$ Since $32 = 3 \cdot 3 = 9$ and $(-3)2 = (-3) \cdot (-3) = 9$, both 3 and -3 are square roots of 9. You can write this as ± 3 .

In the example above, you can simplify the square root of 9 to get ±3 since 9 is a perfect square.

Consider solving an equation like x2 = 11. Because 11 is not a perfect square, you would need to write your answer using the square root symbol. So, the exact solution of x2 = 11 is x = #11.

Try it yourself! Solve each equation for the variable. Don't forget to check if you're taking the square root of a perfect square or not!

$a^2 = 36$	$m^2 = 4$	g ² = 68
<i>j</i> ² = 16	$q^2 = 20$	b ² = 144
r ² = 55	d² = 81	s² = 225
f ² = 141	$w^2 = 100$	h² = 200
$c^2 = 289$	y² = 400	z ² = 180
v² = 900	k² = 625	p ² = 250