WORKSHEET ON EIGENVALUES AND EIGENVECTORS

MATH 186–1

Definition 0.1. Suppose that T : Rn is called a eigenvector for T if there exists a number λ such that T(v) = λ v. In this case, the number λ is called an eigenvalue for T. 1. Fix vectors and various linear transformations. In each case determine which vectors are eigenvectors and identify the associated eigenvalues. (a)SetT:R2→R2tobethelineartransformationrepresentedbythematrix \rightarrow Rn is a linear transformation.1 A non-zero vector v \in Rn $\{u,v\}$ to be a basis for R2 and fix $\{x,y,z\}$ to be a basis for R3. Given below are certain $\lceil 2003 \rceil$ Trythe vectors, u, v, $u + v$, and $u - v$ u is an eigenvector with associated eigenvalue 2. v is an eigenvector with associated eigenvalue 3. The others are not eigenvectors. [] (b)SetT:R2→R2tobethelineartransformationrepresentedbythematrix $[$ 0110₁Trythe vectors u, v, $u + v$ and $u - v$. u + v is an eigenvector with associated eigenvalue 1. u − v is an eigenvector with associated eigenvalue −1. The others are not eigenvectors. [] (c)SetT:R2→R2tobethelineartransformationrepresentedbythematrix vectors $u, v, u + v$ and $u + 2v$. u + 2v is an eigenvector with associated eigenvalue 2. The others are not eigen $\sqrt{0121}$ Trythe Dvectors. (d)Set TR3→R3 tobethelineartransformat ionrepresentedbythematrix _ 0a0∐where \Box a00
0a0[]where a00 a,barealldistinctconstants.Trythevectorsx,y,z,x+y,3x -7yandx+y+z.

 $x,y,x+y,3x - 7y$ are all eigenvectors associated with the eigenvalue a. z is an eigenvector with associated eigenvalue b. $x + y + z$ is not an eigenvector.

We'll now begin to develop a better method for identifying eigenvalues and eigenvectors than what we did on the previous page (guess and check). First fix some notation. We will use the letter I to denote the identity linear transformation. That is I: R2 \rightarrow R2 is the map defined by the formula I(w) = w for all $w \in R$ 2. Suppose that T : R2 \rightarrow R2 is $\frac{2}{3}$ linear transformation. Let's suppose that a vector w is an \cdot I−T) \cdot I – eigenvector for T with associated eigenvalue λ. Prove that the new linear transformation (λ is not injective. Here (λ I'm going to assume that w is a non-zero vector. Eigenvectors are always assumed to be nonzero (I should have said this more clearly on the first page). Then T) is defined by the rule $(\lambda \cdot I - T)(x) = T(x) - \lambda \cdot I(x)$ for all $x \in R2$.

$(\lambda \cdot I)$ T $(\lambda \cdot I) = \lambda w - T(w) = \lambda w - \lambda w = 0.$

But(λIT)(<u>0</u>)=0alsoso(λIT)sendstwodifferentvectorstozeroandsoitisnotinjective.

3. With no

thematrix [tationa]sinproblem#2,fixabasis{u,v}forR2.AssumethatTisrepresentedby ,writedownamatrixrepresentationof(λ·I−T).Finallywritedownthe

determinant of this matrix you constructed (note that this determinant is a polynomial in the variable λ, it is called the characteristic pol

[ynomialofthem]atrix). Thematrixrepresentationof($\lambda I = T$)is $\lambda - e = -f$.Thedeterminantis g − $(\lambda \underline{e})(\underline{\lambda} h) + fg$

Remark 0.2. One can do something similar for 3 3 matrices. In particular, there is a determinant

×

of such matrices and you can construct the characteristic polynomial in the same way. Versions of the results on the following pages also hold for 3 3 matrices. ×

4. Suppose that k is a real number. Show that that k is a root of the polynomial from problem 3.

[ifandonlyifkisaneigenvalueforT.

Hint:In]thehomeworkyouturnedinyesterday,youshowedthataifTwasrepresentedbyamatrix a b ,thenTisinjectiveifandonlyifad−bc6=0.

F[ixaba]sisu,v∈R2andfixalineartransformationT:R2→R2representedbythematrix

ef justasinthepreviousproblem.

Suppose first that k is a root of the characteristic polynomial of this matrix. Then det(k $(L-T) = 0 \cdot I - T$) is not injective. But then there exists a non-zero w such that $-T(w) = 0$ or in other words kw = $k\dot{\mathbf{i}}$ (w) = T(w) which proves that w is an eigenvector and in particular, (k (kİ˙

with associated eigenvalue k.

Conversely, supposethat kisaneigenvalueforthematrix $[$ e f $]$ Thenithasanassociated

nonzero eigenvector w. Thus kw = T(w) and it follows (reversing the steps from above) that − T)(w) = (kİ^{ti det}). But then det(kİ^{ti} − T) = (k − e)(k − h) + fg = 0. Thus k is a root of the

polynomial $(\lambda - e)(\lambda - h) + fg$.

heeigenvaluesofthelineartransformationsfromproblem#1(a),(b),(c).What's 5. Compute t stopping youfrom]computingtheeigenvaluesforthelineartransformationcorrespondingtothe [matrix $9 - 1$ −10?(Geometrically,remindyourselfwhatthislineartransformationdoes).

(a) The characteristic polynomial is $(\lambda - 2)(\lambda - 3)$ and so the roots (and thus eigenvalues) are − 2 and 3.

1 and so the roots (and thus eigenvalues) are −1 and − 1) (b) The characteristic polynomial is λ 2 1

 $-2 = \lambda^2 - \lambda - 2$ and so the roots (and thus . eigenvalues) are 2 and −1. (c) The characteristic polynomial is λ (λ)

(d) The characteristic polynomial is λ 2 + 1. Thus polynomial doesn't have any roots! Geomet-

rically, it corresponds to rotation by 90 degrees (and so geometrically, one would not expect

any eigenvectors either).

6. Can a linear transformation T : R2 answer. \rightarrow R2 have more than 2 distinct eigenvalues? Justify your

No, the eigenvalues of T are always the roots of a polynomial equation of degree 2. Such equations can have at most 2 roots (although sometimes they can also have 1 root or zero roots).

 \rightarrow R2 is a non-surjective linear transformation. Prove that λ = 0 is an

7. Suppose that T : R2

.

eigenvalue for T.

Since T is non-surjective, it is non-injective. Thus T(w) = T(w′) for two distinct vectors w and w′. Then T(w − w′) = T(w) − T(w′) ש0 = 0(w − w′). In particular, 0 is an eigenvalue for
the eigenvector w

8. Suppose that T : R2 \rightarrow R2 is a linear transformation. Further suppose that x, $y \in R2$ are linearly independent eigenvectors of T but they have the same eigenvalue λ . Show that every vector in R2 is an eigenvector of T (associated to the same eigenvalue) and also that the characteristic polynomial of the matrix associated to T has a double-root at λ . What would it mean about T if λ = 0?

Fix any vector $w \in R2$. Since x, y are linearly independent, they are a basis and so we can write $w = ax + by$. But then

$$
T(w) = T(ax + by) = aT(x) + bT(y) = a\lambda x + b\lambda y = \lambda(ax + by) = \lambda w
$$

as desired.

Now we show that the characteristic polynomial has a double root. We know that it has one root λ and so if we write the characteristic polynomial z2 + dz + e with the variable z (other letters $-\lambda$ (z−???) = z2 + dz + e using polynomial long division. Let us use the variable γ instead of ???. Then γ must be an eigenvalue with associated eigenvector already seem to be used), then (z W['] 6= 0. But w' \in R2 so w' is also an eigenvector associated to λ. In other words $\lambda w' = T(w') = vw'.$

Now we turn to the question of finding the eigenvectors associated to a

thatT:R2→R2isalineartransformationrepresentedbyamatrix eigenvalue. To find the eigenvectors

[giyenei]genvalue.Suppose
andthat and san

[associatedto\lambda, write

$$
\begin{bmatrix} e & f \end{bmatrix} \begin{bmatrix} x & j \end{bmatrix} = \lambda^{\begin{bmatrix} x & j \end{bmatrix}}
$$

Now expand the left side of the equation and obtain equations (viewing x and y as variables). Find any pair of x and y that satisfy those equations and you have found an eigenvector. Let us do an explicit example:

Example0.3.Supposewearegiventhematrix

 $A = \begin{bmatrix} 12 \\ 43 \end{bmatrix}$
43. Bythemethoddescribedabove,

one can verify that the number 5 is we write [aneigenvalueofthelineartransformationassociatedtoA.So

1 2 1 [x y and the befuside is

 $[35x5]$ y $\begin{bmatrix} x+2y \\ 4x+3y \end{bmatrix}$. Sowehave the Therightsideoftheequationisjust **V** equations $v+2v=5v$

$$
5y=4x+3y
$$

 $V = 2$. Thus $\begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix}$ isan eigenvector (asis $\begin{bmatrix} -1 & 7 \\ 2 & 1 \end{bmatrix}$) Whichreduces(ineithercase)to

9. Using this method, find the eigenvectors associated to the matrices from problem #1(a)(b)(c). Also, find the eigenvalues and eigenvectors associated to $_1$ 12 $_1$

3 4 .Thislastoneisfairlymessy.

- $\left[\begin{array}{c} 10 \\ 1 \end{array} \right]$ aretheeigenvectorsfortheeigenvalue2. (a) All scalar multip **Allscalar** flesolfu= 01['] aretheeigenvectorsfortheeigenvalue3. multiplesofy= $[114]$ aretheeigenvectorsfortheeigenvalue1.Allscalar (b) All scalar multiples o $[fu+v=$ $1-1$] aretheeigenvectorsfortheeigenvalue-1. $multiplesofu-v=$ (c) Allscalarmultiples of $u^{+2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ are the eigenvectors for the eigenvalue 2. Allscalar
- multiples
of- $u + v = \begin{bmatrix} v & 2 \\ -1 & 1 \end{bmatrix}$ are the eigenvectors for the eigenvalue-1.
- (d) All scalar multiples of u + 3+ $33\frac{\sqrt{1}}{4}$ v= $\left[\begin{array}{cc} 1 & 1 \ \frac{\sqrt{3}+33\frac{1}{4}}{4} & \end{array}\right]$ are the eigenvectors for the eigenvalue $\frac{\sqrt{5}}{2}$ Allscalarmultiplesof u+3-33 $\frac{\sqrt{4}}{4}$ v= $\left[\begin{array}{cc} \frac{1}{\sqrt{3}} & 1 \end{array}\right]$ aretheeigenvectorsforthe eigenvalue $5\frac{\sqrt{33}}{2}$.